Semantic Naming Convention and Software Quality

Stefan Berner, Sigmaplan AG, Switzerland

Summary:

What influence does the quality of names have on software products?
Semantic naming conventions can help to improve understandability, cor-
rectness and maintainability of software.

A name can be said to be good, when a person who reads it knows
immediately what it stands for and what it means. There should be no need
to think a long time over the meaning of a name or to read a long descrip-
tion of the element referred to. Good names are self-explanatory. Good
names avoid misunderstandings, shorten the time to understand something
and can help to avoid errors by forcing developers to think more about the
thing described by the name.

Examples are given to show the mechanisms of understanding the meaning |
of names. What does self-explanatory mean and how can it be achieved?

This paper presents a set of rules and naming conventions for various soft-
ware elements.

The paper concludes with observations which the author has made during
his consulting activities: "What makes it so difficult to employ the presented
naming conventions and standards in real-life projects”

Stefan Berner, Sigmaplan AG, Zihringerstr. 61, CH-3012 Berm
email: sberner@sigmaplan.ch, Tel: +41/31/3012365

1. Quality of names - guality of software

In the good old times of programming we did not worry about names. 125 or X2 were just
fine, especially as most programminglanguages did not allow identifiers longer than 6 or 8
characters.

So why bother with finding good names?

gV

What is the justification for spending time on better names? There are several reasons for this,
as the quality of the software can thereby be improved:

1.1. Maintainability

The better the name of a software element’, the faster its meaning is understood.
Compare a=b/100¥¢c*m/12

with interest := amount / 100 * interest_rate / 12 * month

The savings resulting from this quality improvement are obvious for all those who have ever
tried to maintain old programs.

1.2. Correctness

The meaning of an element is enhanced by a more exact specification of its name. Thereby:
— fewer misunderstandings can happen
— more discussion will take place about the name and the #ing it names
— implying deeper insight of the author into the problem

ki |

EMPLOYEE J/ l DEPARTMENT
of

The following example:

A N

will be accepted by almost everybody because you can interpret of and in in whatever way
you like, whereas:

~
N\ works in (
EMPLOYEE / L DEPARTMENT

- employs

will inevitably lead to questions like
— who pays the employee?
— for which department does the employee work?

These questions show the benefit of discussion: the knowledge of how a company is or-
ganised will be improved by every information confirmed or refuted. The possibility of
misunderstandings through different interpretations is significantly lower.

1.3. Understandability

Understandability can be improved in two ways:

1) the reader of a documentation or program code understands it faster and better.

2) in order to find good names and terms, the author of a documentation must have under-
stood the documented topic. He/she is no longer able to hide behind: common, meaning-
less definitions.

' Here the term software element is used for everything which is given a name in the process of development

(atiributes, entitics, functions, programs, rejationships efc.)

These are only some major points of quality improvements. More justification for good names
can be found in almost any book about software quality, so we will not go into deeper details

of possible gains. This paper concentrates on how fo find good names rather than on why do
we need good names?

2. What is a good name?

There is a simple rule for 2 good name:

{A good name is as short as possible but as long as necessary.

The attribute short as possible is quite obvious and easy to follow (x, a, 123). So how do we
define necessary?

Before we can know what is necessary for good understanding, we have to know how we un-
derstand names:

A name should represent its semantics, the meaning of the thing being named. Whenever
we read or hear a name, we immediately associate it with some experience we have made,
we imagine something.

An association can be a set of examples, a range of values, a picture, a sound etc. The under-
standing depends always on the social, cultural and educational background of that person.

For example: Reading the sports pages in the newspaper: what possible values do you asso-
ciate with match result?

If you thought for example of a value like 2:1 you are probably a footbali or
icehockey player (or fan). If you prefer handball, you would think of something
like 28:24 whereby a basketball player would imagine a result like 83:67.

A name can be said to be good, if the reader understands the same (or at least similar) thing
as the author
There are 3 possibilities:

1. Iunderstand what was meant = very good
2. I do not understand the name = not so good but at least no error
3. understand something different = bad

There is a kind of measurement for the quality of names:

Reading or hearing a name leaves us with an impression of some meaning. Whenever we learn
new information (e.g. new examples) about this thing our previous impression is confirmed or
contradicted.

2 The best variant is if you understand what was meant and not what was written ©.

As a further means of measurement consider the following rule:

the quality of a name is indirect proportional to our astonishment whenever
we learn something new about the meaning of the name.

Examples:
Name probable first idea of range of values
auinber >0
passenger-number 0 .. ca 102 to 10¢
bus-passenger-number 0 .. ca 100

Consider the values for the attribute bus-passenger-number such as:

27.73 or 32'415

Both values would destroy your first idea of a bus-passenger-number. They could for
example match the meaning of names like bus-passenger-number-average and bus-
passenger-number-total respectively.

In this example we can also see, how a more exact name leads to a narrower range of
values and therefore to a more accurate understanding.

3. Rules for good names

In this section we will focus on the communicative power of names and pot on their brevity.
We believe that the process of finding good names is an essential one. This does not mean

that the (often long) resulting names will be used in all following steps of development in their
full length.

The science of linguistics refers to two specific types of names:
Referential names are artificial names, specially chosen to represent a

well-defined semantic in a well-defined context.

Iconic or descriptive names are common, basic words which describe the thing they

represent.
referential names descriptive names
examples sweater pullover
result output
patates pommes-de-terre
Oracle V7 database
iconic self-descriptive ,,
advantage less misunderstandings because it is a first time reader can understand it
difficult to find another without knowledge of the whole

interpretation context

disadvantage the first time reader cannot under- can lead 1o misinierpretation due to
stand the meaning without some different context or background of
background information reader. Suffers from the informality

of natural language.

Descriptive names are usually easier to read and should therefore be given
preference. Whenever there exists a referential name, which in the given
context or environment is well known and unequivocally defined’, it should
be used. The usage of referential names should also be considered where
descriptive names could lead to significant misunderstandings

Often it is worthwhile to spend some time on finding a good descriptive name. If such a name
is too long, then an abbreviation is justified. Usually people get used to abbreviations and they
will become over time well-defined referential names.

Here a general rules for compound names:

Good descriptive names are usually compound names. To improve
readability, one should use a consistent rule to build compound names.

Tn German the rule for building compound names is easy. It follows the grammatical rule, that
in 2 compound name, the last word defines the basic #hing. In other languages this rule may be
different or the usage of compound names is not as common as in German. But in every
language there is certainly a way to build compound names of any length which are at least
understandable.

An example for an (exaggerated) application of this rule:
The German
Bodensee-Dampfschiffahrt-Gesellschaft-Kapitans-Miitze
is an exact definition of Miitze, i.e. “Cap”.
In English compound words of this length are not good grammatical style, but they are
comprehensible:

Lake-Constance-steam-boat-company-captain-cap

In French (as indeed also in Italian) a reversed word order is used, hence:
bonnet-de-capitaine-companie-bateaux-de-vapeur-lac-de-constance

The following example shows the difference derived from the sequence of names in a com-

pound name:
line-number is a number of a line (e.g. 25)

whereas »
number-line is 2 line of numbers (e.g. 'l 4 56 123123 77)

3 Caution: often referential names are thought of as well-defined. Only the search for a good iconic name
can reveal that there are several, often conflicting well defined meanings.

3.1. Entities

Entities are concreie or abstract objects. An object name should describe a zhing not a
property. This means the immediate association should be an object with a couple of typical
properties (attributes). For example:

The object could make you think of

CAR shape, colour, wheels, type, price ...
PERSON age, sex, height, name, address, salary ...
ORDER number, price, date, positions ...

Naming rule for concrete objects:

IName the thing as accurately as possible.

Usually there is a suitable name defined in the dictionary:
CAR, ROJECT, PERSON, HOUSE

Naming rule for abstract objects (e.g. intersection entities):

Use a 'natural' name if there is an established one (e.g. assignment for the
connection of person to a job).

If there is no ‘natural’ name, one should build an artificial one which tells
the reader what the key components of the entity are.

For example: “

[PROJECT PERSON }

=

In this example what should be the name of the intersection entity?
As the keys of "?" are the keys of the three other entities, we try:

a) PROJECT-PERSON-JOB b) PERSON-PROJECT-JOB
¢) PERSON-JOB-PROIJECT d) JOB-PERSON-PROJECT
¢) JOB-PROJECT-PERSON f) PROJECT-JOB-PERSON

Applying the fule for compound names we decide whether we want ta store information
about a JOB (a and b), a PROJECT (c and d) or a PERSON (e and f). If the main property
of this entity is the time spent doing a certain job on a project, PROJECT-JOB-PERSON
(which can be read as a PERSON doing a JOB on a PROJECT) would be a good choice.
This procedure of finding a good name is not formal. It depends on what aspect of the en-
tity you wish to emphasise. Hence choose the name which gives the best (closest) descrip-
tion and which is least likely to be misunderstood.

3.2, Relationships

The descriptions” of the relationships in an Entity-Relationship-Model (ERM) are the key to
understanding the model and the underlying real world.

The diagram

EQ:—%ES% N }J> { PRODUCT

tells you only, that a salesperson is somehow related with a product. Whereas

\;eils <r’
SALES' is sold by PRODUCT
PERSON s responsible for P
Y, is looked \&
after by

offers much more information. The descriptions reveal that there are two relationships of a
different type.

The following rules for good relationship descriptions are proposed:

o there must be a verb. A relationship describes always a state or an
activity.

o there should not be a noun in the description. A noun describes an
object (entity!) and could therefore hide a transitive (non-normalised)
relationship. It is usually possible to replace a noun by a participle or an
adverb (e.g. owner of = owning)

« avoid descriptions like Aas, is of, is in. There is almost always a better
(more accurate) verb available. Relationships with this kind of generic
description often show that the author did not understand the
relationship or has not thought enough about it.

o avoid common, universally valid descriptions which are almost always
true. Favourites are is related to, is connected with.

o describe a relationship in both directions and make sure both .express the
same semantics (cross-check!)

4 goume methods nante the relationships. But as two objects are always related by a verb, name is a bad term
for ii.

o describe the relationship consistently in such a way that you can read the
ERM as you would a plain text’. The example above can be read as

A salesperson sells many products
A product is sold by many salespersons.

3.3, Attributes

An attribute is a property of an entity. A property is expressed by a single value.

|An attribute name must be associatable with a value.

For example: age = 27

colour = red

contained in the association.

For values which need a unit of measure the type of the unit should also be

For example
size could be in m,

better would be

length =
area =
volume =
clothing size =

m? or m3

m?:
m3
no physical unit of measure

The rule for compound names is as important for attributes as it is for entities.

For example:
passenger-number
expected-passenger-number

passenger-number-average

3.4. Functions

— the number of passengers

e.g. 65

— the number of passengers expected®
e.g. 15'000

— the average number of passengers
e.g. 32.15

The term function is a very good example of a referential name with as many different defini-

tions as there are environments.

5 There are different ways to describe relationships. One should not make a religion out of it. Choose a

description and use it consistent!y.
6

There is a semantic difference between the number of expected passengers and the expected muinber of

passengers. As the associated range of possible values is the same and passenger-expected-number sounds

odd we can leave that one.

As the naming rules are different, we make the distinction between real functions in a mathe-
matical sense (a piece of code which returns one single value) and programs, business func-
tions, tasks, procedures ... in short every piece of code which does something to one or
several objects.

3.4.1. Real functions
A real function used in its proper way returns one single value and is therefore used like an
attribute.

-lThe naming rules for real functions are the same as the rules for attributes.

3.4.2. Business functions
We propose the following naming rules for procedures, business functions etc.

o A procedure does something to something. From that fact we deduct
the rule that a procedure name must contain at least a verb and an
object. If a procedure does a lot of things to a lot of objects, mention
only the 1 or 2 most important activities (verb) and the 1 or 2 most
important objects in the name

e Avoid universal verbs like do, make etc. Find a verb which narrows
possible interpretations.

s Use the proper names (or abbreviations) as defined in a data dictionary
for the manipulated objects.

o Do not hesitate to use long names. Calls to procedures are usually on a
line of their own, so there is enough room to write a long name.

3.5. Abbreviations

As mentioned above, the usage of abbreviations is encouraged. Every abbreviation 1s a
referential name of its own and is no longer subject to misinterpretation. It is a good tech-
nique to define abbreviations as soon as possible. Otherwise developers start to invent abbre-
viations of their own and this leads to chaos.

We propose the following rules for defining good abbreviations:

o Use standardised abbreviations like num for number, emp for employee
or abv for abbreviation
With this compound abbreviations can be built such as emp-num which
are iconic referential names

o Define for one long name several abbreviations of standardised length
For example: define an abbreviation o
2-3 characiers long (io be used as a prefix)
6-8 characters long (to be used where you have to save space)
10-15 characters long (if the original is too long to be used in any
circumstance).

o TForbid any usage of abbreviations not defined in the scope of the
project.

4. Practical advice

4.1. What malkes it so difficult to choose good names?
During my consulting activities to several projects I have identified several reasons why

developers do not look for good names. I do not claim that this list is complete or applicable
for every environment.

» looking for good names takes too much time.
This is the usual excuse! Of course we do not make a lengthy party game of it. But if you
are not capable of finding a good name within reasonable time, you have probably not

really understood the problem. So the time is actually spent looking for the semantics and
is therefore well-invested time.

o good names are too long »
Another good excuse! If typing time is relevant for the delivery date of your project, it is 2
funny kind of project anyway. There is no rule which forbids the usage of abbreviations.

o finding good (short) names is a creative task
Creativity is a skill not everybody has as much as she or he would like to have. To be
creative is hard mental work and it cannot be done all day or on demand.

» good names are accurate and require decisions
To agree concrete, unequivocal meanings of things often demands decisions. Many people
do not like making decisions. They prefer agreeing to a name whose meaning can be
adjusted later.

o good names require fisll understanding of the zhing they describe
If you do not fully understand what you are describing or doing, you are only likely to find
the correct name for it by accident.

4,2. How to improve the quality of names
Here is some advice on how the quality of names can be improved in a software development
environment:

o teach the developers; to know the nature of good names is a precondition for choosing or
finding them.
¥E
o make the quality of names a major topic during reviews and other quality checks. The
more discussion there is about bad names, the more the developers will look for better
ones.

o focus your quality assurance on the areas where the names are bad or ambiguous. There
you will most likely find sources of problems, misunderstandings and errors.

o whenever you have to ask for the meaning of a name, discuss alternative names with the
author. "What name could have avoided this question?”

5, Conclusion

Experience has shown, that knowing the concepts and rules of good names is half of the
game. Once everybody in a development environment is convinced that better names lead to
better software, the quality of the names will improve significantly.

I personally do not believe that following formal rules strictly for a creative task like finding
good names is of great benefit. This process could only be formalised, when good could be
formally defined. Maybe one day some linguists or informaticans will work on it, but it is
questionable that there will be a big profit for the quality of software. A pragmatic approach
is good enough to let us find adequately good names in a reasonable time.

